Converting between grid eastings and northings and ellipsoidal latitude and longitude
All the formula here are coded into a spreadsheet available from the OS web site.
Converting latitude and longitude to eastings and northings
To convert (project) a position from latitude and longitude coordinates (φ, λ) to easting and northing coordinates (E, N) using a Transverse Mercator projection (for example, National Grid or UTM), compute the following formulae. Remember to express all angles in radians. You will need the ellipsoid constants a, b and e² and the following projection constants. Annexe A gives values of these constants for the ellipsoids and projections usually used in Britain.
N₀ — northing of true origin
E₀ — easting of true origin
F₀ — scale factor on central meridian
Φ₀ — latitude of true origin
λ₀ — longitude of true origin and central meridian.
Here’s a worked example using the Airy 1830 ellipsoid and National Grid. Intermediate values are shown here to 10 decimal places. Compute all values using double-precision arithmetic.
φ: 52° 39′ 27.2531″ N
III: 1.5606875430E+05
λ: 001° 43′ 04.5177″ E
IIIA: -2.0671123013E+04
IV: 3.8751205752E+06
ν: 6.3885023339E+06
V: -1.7000078207E+05
ρ: 6.3727564398E+06
VI: -1.0134470437E+05
η²: 2.4708137334E-03
M: 4.0668829595E+05
E: 651409.903 m
I: 3.0668829595E+05
N: 313177.270 m
II: 1.5404079094E+06
Converting eastings and northings to latitude and longitude
Obtaining (φ, λ) from (E, N) is an iterative procedure. You need values for the ellipsoid and projection constants a,b, e², N₀, E₀, F₀, Φ₀ and λ₀ as in the previous section. Remember to express all angles in radians. First compute:
and M from equation (C3), substituting Φ' for Φ. If the absolute value of N-N0-M ≥ 0.01mm obtain a new value for Φ' using
and recompute M substituting Φ' for Φ . Iterate until the absolute value of N-N0-M < 0.01mm then compute , and using equation (C2) and compute
Here’s a worked example using the Airy 1830 ellipsoid and National Grid. Intermediate values are shown here to 10 decimal places. Compute all values using double-precision arithmetic.
E: 651409.903 m
final φ′: 9.2006620954E-01 rad
N: 313177.270 m
ν: 6.3885233415E+06
ρ: 6.3728193094E+06
φ′ #1: 9.2002324604E-01 rad
η2: 2.4642206357E-03
M #1: 4.1290347143E+05
VII: 1.6130562489E-14
N-N0-M#1: 2.7379857228E+02
VIII: 3.3395547427E-28
IX: 9.4198561675E-42
φ′ #2: 9.2006619470E-01 rad
X: 2.5840062507E-07
M #2: 4.1317717541E+05
XI: 4.6985969956E-21
N-N0-M#2: 9.4594338385E-02
XII: 1.6124316614E-34
XIIA: 6.6577316285E-48
φ′ #3: 9.2006620954E-01 rad
M #3: 4.1317726997E+05
N-N0-M#3: 3.2661366276E-05
φ: 52° 39′ 27.2531″ N
λ: 001° 43′ 04.5177″ E
φ′ #4: 9.2006620954E-01 rad
M #4: 4.1317727000E+05
N-N0-M#4: 1.1350493878E-08
Last updated
Was this helpful?