LogoLogo
OS Docs HomeOS NGDOS APIsOS Download ProductsMore than MapsContact Us
  • More than Maps
  • Geographic Data Visualisation
    • Guide to cartography
      • Introduction to cartography
      • Types of maps
      • Symbology
      • Colour
      • Text on maps
      • Generalisation
      • Coordinate reference systems
      • Projections
      • Scale
      • Map legends
      • Map layout
      • Relief representation
      • North arrows
    • Guide to data visualisation
      • Introduction to data visualisation
      • GeoDataViz design principles
      • Types of visualisation
      • Thematic mapping techniques
      • Data visualisation critique
      • Accessible data visualisation
      • Ethical data visualisation
      • Software
      • Data
    • GeoDataViz assets
      • GeoDataViz basemaps
      • Stylesheets
      • GeoDataViz virtual gallery
      • Equal area cartograms
      • How did I make that?
        • Apollo 11 Landing
        • North York Moors National Park, 70 years
        • Snowdonia National Park, 70 years
        • Great Britain's National Parks
        • Great Britain's Islands
        • Great Britain's AONB's and National Scenic Areas
        • Famous shipwrecks of Pembrokeshire
        • Trig pillars today
        • Britain's most complex motorway junctions
      • #30DayMapChallenge
  • Data in Action
    • Examples
  • Demonstrators
    • 🆕Product Viewer
    • Addressing & location demonstrators
      • Address Portfolio overview
      • Which address product should you use?
      • AddressBase
      • AddressBase Core
      • AddressBase Plus
      • AddressBase Premium
      • Address Classifications
      • Addressing Lifecycle
      • OS Emergency Services Gazetteer
      • What are Vertical Streets?
      • Why are there differences in boundaries?
    • Contextual demonstrators
    • Customer best practice
      • Channel Shift
      • Data Management and OS Data Hub
      • End User Licence vs Contractor Licence
      • 🆕 IDs vs Spatial Relationships
      • Why we should capture good quality addresses at source
      • Why we Snap and Trace
    • Network Demonstrators
      • OS Detailed Path Network
      • OS Multi Modal Routing Network
        • OS Multi Modal Routing Network
      • Water Networks overview
      • OS MasterMap Highways Network and OS NGD Speeds
      • OS MasterMap® Highways Network and OS Open Roads™
    • OS MasterMap Generation APIs
      • Using the OS Features API
      • Using the OS Features API Archive
      • Using the OS Downloads API
      • Using OS APIs in ESRI Software
    • 🆕OS NGD (National Geographic Database)
      • OS NGD Address
      • OS NGD Boundaries
      • 🆕OS NGD Buildings
        • 🆕Building and Building Access Feature Types
        • Building Part and Building Line Feature Types
      • 🆕OS NGD Geographical Names
      • OS NGD Land
      • OS NGD Land Cover enhancements
      • 🆕OS NGD Land Use
      • OS NGD Land Use enhancements
      • 🆕OS NGD Structures
        • 🆕OS NGD Structures
        • Field Boundaries
      • 🆕OS NGD Transport Features
      • 🆕OS NGD Transport Network
      • OS NGD Transport RAMI
      • OS NGD Water Features
      • OS NGD Water Network
      • OS NGD API - Features
      • Ordering OS NGD data
      • Change only updates
      • OS NGD Versioning
      • Creating a topographic map from OS NGD Data
      • Analytical styling for OS NGD data
    • OS MasterMap® demonstrators
    • 🆕Product & API Comparisons
      • 🆕Comparison of Water Network Products
  • Tutorials
    • GeoDataViz
      • Thematic Mapping Techniques
      • Downloading and using data from the OS Data Hub
      • How to download and use OS stylesheets
      • How to use the OS Maps API
      • Creating a bespoke style in Maputnik
    • GIS
      • Analysing pavement widths
      • Basic routing with OS Open Data and QGIS
      • Walktime analysis using OS Multi-modal Routing Network and QGIS
      • Creating 3D Symbols for GIS Applications
      • Constructing a Single Line Address using a Geographic Address
      • Creating a Digital Terrain Model (DTM)
      • Visualising a road gradient using a Digital Terrain Model
      • Visualising a road gradient using OSMM Highways
    • 🆕APIs
      • 🆕Using OS APIs with EPC API
      • 🆕OS APIs and ArcGIS
  • Deep Dive
    • Introduction to address matching
    • Guide to routing for the Public Sector
      • Part 1: Guide to routing
      • Part 2: Routing software and data options
      • Part 3: Building a routable network
    • Unlocking the Power of Geospatial Data
    • Using Blender for Geospatial Projects
    • A Guide to Coordinate Systems in Great Britain
      • Myths about coordinate systems
      • The shape of the Earth
      • What is position?
        • Types of coordinates
        • We need a datum
        • Position summary
      • Modern GNSS coordinate systems
        • Realising WGS84 with a TRF
        • The WGS84 broadcast TRF
        • The International Terrestrial Reference Frame (ITRF)
        • The International GNSS Service (IGS)
        • European Terrestrial Reference System 1989 (ETRS89)
      • Ordnance Survey coordinate systems
        • ETRS89 realised through OS Net
        • National Grid and the OSGB36 TRF
        • Ordnance Datum Newlyn
        • The future of British mapping coordinate systems
        • The future of British mapping coordinate systems
      • From one coordinate system to another: geodetic transformations
        • What is a geodetic transformation?
        • Helmert datum transformations
        • National Grid Transformation OSTN15 (ETRS89–OSGB36)
        • National Geoid Model OSGM15 (ETRS89-Orthometric height)
        • ETRS89 to and from ITRS
        • Approximate WGS84 to OSGB36/ODN transformation
        • Transformation between OS Net v2001 and v2009 realisations
      • Transverse Mercator map projections
        • The National Grid reference convention
      • Datum, ellipsoid and projection information
      • Converting between 3D Cartesian and ellipsoidal latitude, longitude and height coordinates
      • Converting between grid eastings and northings and ellipsoidal latitude and longitude
      • Helmert transformation worked example
      • Further information
  • Code
    • Ordnance Survey APIs
    • Mapping
    • Routing with pgRouting
      • Getting started with OS MasterMap Highways and pgRouting
      • Getting started with OS MasterMap Highways Network - Paths and pgRouting
      • Getting started with OS NGD Transport Theme and pgRouting
      • Getting started with OS NGD Transport Path features and pgRouting
  • RESOURCES
    • 🆕Data Visualisation External Resources
Powered by GitBook

Website

  • Ordnance Survey

Data

  • OS Data Hub
On this page

Was this helpful?

  1. Deep Dive
  2. A Guide to Coordinate Systems in Great Britain
  3. From one coordinate system to another: geodetic transformations

Transformation between OS Net v2001 and v2009 realisations

PreviousApproximate WGS84 to OSGB36/ODN transformationNextTransverse Mercator map projections

Last updated 4 months ago

Was this helpful?

As detailed in the OS Net ETRS89 realisation was originally related to ITRF97 at epoch 2001.553. This original realisation is now designated “OS Net v2001”. In 2016 it was updated to a realisation related to ITRF97 at epoch 2009.756, designated “OS Net v2009”. The average shift between the two sets of coordinates is small (rms of all components ~18mm). A file of the shifts for individual OS Net stations is available on the OS website. The transformation parameters below can also be used (with equation 3 from the 'Helmert datum transformations' page) to move any coordinates related to OS Net v2001 to be compatible with OS Net v2009.

OS Net v2001 to OS Net v2009 Helmert transformation parameters.

tX(m)
tY(m)
tZ(m)
s (ppm)
rX(sec)
rY(sec)
rZ(sec)

+ 0.0054

-0.0117

-0.0010

+ 0.000

+ 0.0000

+ 0.0000

+ 0.0000

The overall RMS of this transformation, when computed from the two OS Net data sets, is 12.2 mm. The RMS residual components in the East, North, Up system are 6.9 mm, 9.2 mm, 17.8 mm respectively.

There is a range of options for transforming coordinates computed under OS Net v2001 to be more compatible with OS Net v2009. In increasing order of accuracy they are:

  1. Apply the 3 parameter transformation given in the table above.

  2. Apply a simple mean shift in X, Y and Z based on the nearest n OS Net stations with n based on the most likely number of OS Net stations used in the original processing. The OS Net station coordinate shifts (in X, Y, Z) are in a file on the OS web site. Both v2001 and v2009 coordinates are given in the OS Net coordinate file on the OS web site so shifts can also be computed from there.

  3. (Equal accuracy to 4 below). Apply weighted mean shifts based on the nearest n OS Net stations with n based on the most likely number of OS Net stations used in the original processing. Weighting can be based on the distance to the OS Net stations.

  4. (Equal accuracy to 3 above). Apply a simple mean shift in X, Y and Z based on the OS Net stations actually used in the processing.

  5. Apply weighted mean shifts based on the OS Nets actually used in the processing. Weighting can be based on the distance to the OS Net stations.

  6. Re-process the raw GNSS data using the OS Net v2009 coordinates.

ETRS89 realised through OS Net