LogoLogo
OS Docs HomeOS NGDOS APIsOS Download ProductsMore than MapsContact Us
  • More than Maps
  • Geographic Data Visualisation
    • Guide to cartography
      • Introduction to cartography
      • Types of maps
      • Symbology
      • Colour
      • Text on maps
      • Generalisation
      • Coordinate reference systems
      • Projections
      • Scale
      • Map legends
      • Map layout
      • Relief representation
      • North arrows
    • Guide to data visualisation
      • Introduction to data visualisation
      • GeoDataViz design principles
      • Types of visualisation
      • Thematic mapping techniques
      • Data visualisation critique
      • Accessible data visualisation
      • Ethical data visualisation
      • Software
      • Data
    • GeoDataViz assets
      • GeoDataViz basemaps
      • Stylesheets
      • GeoDataViz virtual gallery
      • Equal area cartograms
      • How did I make that?
        • Apollo 11 Landing
        • North York Moors National Park, 70 years
        • Snowdonia National Park, 70 years
        • Great Britain's National Parks
        • Great Britain's Islands
        • Great Britain's AONB's and National Scenic Areas
        • Famous shipwrecks of Pembrokeshire
        • Trig pillars today
        • Britain's most complex motorway junctions
      • #30DayMapChallenge
  • Data in Action
    • Examples
  • Demonstrators
    • 🆕Product Viewer
    • Addressing & location demonstrators
      • Address Portfolio overview
      • Which address product should you use?
      • AddressBase
      • AddressBase Core
      • AddressBase Plus
      • AddressBase Premium
      • Address Classifications
      • Addressing Lifecycle
      • OS Emergency Services Gazetteer
      • What are Vertical Streets?
      • Why are there differences in boundaries?
    • Contextual demonstrators
    • Customer best practice
      • Channel Shift
      • Data Management and OS Data Hub
      • End User Licence vs Contractor Licence
      • 🆕 IDs vs Spatial Relationships
      • Why we should capture good quality addresses at source
      • Why we Snap and Trace
    • Network Demonstrators
      • OS Detailed Path Network
      • OS Multi Modal Routing Network
        • OS Multi Modal Routing Network
      • Water Networks overview
      • OS MasterMap Highways Network and OS NGD Speeds
      • OS MasterMap® Highways Network and OS Open Roads™
    • OS MasterMap Generation APIs
      • Using the OS Features API
      • Using the OS Features API Archive
      • Using the OS Downloads API
      • Using OS APIs in ESRI Software
    • 🆕OS NGD (National Geographic Database)
      • OS NGD Address
      • OS NGD Boundaries
      • 🆕OS NGD Buildings
        • 🆕Building and Building Access Feature Types
        • Building Part and Building Line Feature Types
      • 🆕OS NGD Geographical Names
      • OS NGD Land
      • OS NGD Land Cover enhancements
      • 🆕OS NGD Land Use
      • OS NGD Land Use enhancements
      • 🆕OS NGD Structures
        • 🆕OS NGD Structures
        • Field Boundaries
      • 🆕OS NGD Transport Features
      • 🆕OS NGD Transport Network
      • OS NGD Transport RAMI
      • OS NGD Water Features
      • OS NGD Water Network
      • OS NGD API - Features
      • Ordering OS NGD data
      • Change only updates
      • OS NGD Versioning
      • Creating a topographic map from OS NGD Data
      • Analytical styling for OS NGD data
    • OS MasterMap® demonstrators
    • 🆕Product & API Comparisons
      • 🆕Comparison of Water Network Products
  • Tutorials
    • GeoDataViz
      • Thematic Mapping Techniques
      • Downloading and using data from the OS Data Hub
      • How to download and use OS stylesheets
      • How to use the OS Maps API
      • Creating a bespoke style in Maputnik
    • GIS
      • Analysing pavement widths
      • Basic routing with OS Open Data and QGIS
      • Walktime analysis using OS Multi-modal Routing Network and QGIS
      • Creating 3D Symbols for GIS Applications
      • Constructing a Single Line Address using a Geographic Address
      • Creating a Digital Terrain Model (DTM)
      • Visualising a road gradient using a Digital Terrain Model
      • Visualising a road gradient using OSMM Highways
    • 🆕APIs
      • 🆕Using OS APIs with EPC API
      • 🆕OS APIs and ArcGIS
  • Deep Dive
    • Introduction to address matching
    • Guide to routing for the Public Sector
      • Part 1: Guide to routing
      • Part 2: Routing software and data options
      • Part 3: Building a routable network
    • Unlocking the Power of Geospatial Data
    • Using Blender for Geospatial Projects
    • A Guide to Coordinate Systems in Great Britain
      • Myths about coordinate systems
      • The shape of the Earth
      • What is position?
        • Types of coordinates
        • We need a datum
        • Position summary
      • Modern GNSS coordinate systems
        • Realising WGS84 with a TRF
        • The WGS84 broadcast TRF
        • The International Terrestrial Reference Frame (ITRF)
        • The International GNSS Service (IGS)
        • European Terrestrial Reference System 1989 (ETRS89)
      • Ordnance Survey coordinate systems
        • ETRS89 realised through OS Net
        • National Grid and the OSGB36 TRF
        • Ordnance Datum Newlyn
        • The future of British mapping coordinate systems
        • The future of British mapping coordinate systems
      • From one coordinate system to another: geodetic transformations
        • What is a geodetic transformation?
        • Helmert datum transformations
        • National Grid Transformation OSTN15 (ETRS89–OSGB36)
        • National Geoid Model OSGM15 (ETRS89-Orthometric height)
        • ETRS89 to and from ITRS
        • Approximate WGS84 to OSGB36/ODN transformation
        • Transformation between OS Net v2001 and v2009 realisations
      • Transverse Mercator map projections
        • The National Grid reference convention
      • Datum, ellipsoid and projection information
      • Converting between 3D Cartesian and ellipsoidal latitude, longitude and height coordinates
      • Converting between grid eastings and northings and ellipsoidal latitude and longitude
      • Helmert transformation worked example
      • Further information
  • Code
    • Ordnance Survey APIs
    • Mapping
    • Routing with pgRouting
      • Getting started with OS MasterMap Highways and pgRouting
      • Getting started with OS MasterMap Highways Network - Paths and pgRouting
      • Getting started with OS NGD Transport Theme and pgRouting
      • Getting started with OS NGD Transport Path features and pgRouting
  • RESOURCES
    • 🆕Data Visualisation External Resources
Powered by GitBook

Website

  • Ordnance Survey

Data

  • OS Data Hub
On this page

Was this helpful?

  1. Deep Dive
  2. A Guide to Coordinate Systems in Great Britain
  3. Ordnance Survey coordinate systems

ETRS89 realised through OS Net

PreviousOrdnance Survey coordinate systemsNextNational Grid and the OSGB36 TRF

Last updated 5 months ago

Was this helpful?

GNSS is the standard tool for precise surveying and mapping, used for all OS precise surveying work. Some characteristics of GNSS as a surveying tool are:

  • GNSS is a three-dimensional positioning system: a precise GNSS fix yields latitude, longitude and ellipsoid height.

  • The highest precision of GNSS positions is at the 2 mm level horizontally relative to a global datum. To achieve this requires networks of permanently installed GNSS receivers. A typical field GNSS survey gives accuracies of a few centimetres relative to a global datum. Vertical position quality is generally about 2.5 times worse than horizontal.

  • GNSS is a purely geometric positioning tool; that is, GNSS coordinates do not give you any information in relation to level surfaces, only in relation to the geometric elements of coordinate system axes and ellipsoid. For this reason, GNSS does not give orthometric height information.

  • GNSS does not require intervisibility between ground reference points; neither is the geometric arrangement of the ground network crucial to the results as it is in theodolite triangulation survey.

  • With care, GNSS can be used very accurately for terrestrial survey over any distance – even between points on opposite sides of the world. For this reason, global datums are used for GNSS positioning. This feature makes GNSS vastly more powerful than traditional survey techniques.

The datum of OS Net is the European Terrestrial Reference System 1989 (ETRS89), which we looked at in . Since this datum is realised by many European precise GNSS reference points, OS Net is actually just a TRF enabling easier access to this datum in Great Britain.

Currently OS Net realises ETRS89 with an ETRF97 frame with a “parent” ITRF of ITRF97 at epoch 2009.756. This OS Net realisation is known as “OS Net v2009”. Prior to this the original OS Net also had an ETRF97 frame with a parent ITRF at ITRF97 but the epoch was 2001.553 so this OS Net realisation is now designated “OS Net v2001”. A small transformation between the two realisations is given in ''.

OS Net comprises of a network of over 100 continuously operating permanent GNSS receivers (COGRs). Because precise GNSS positioning is always carried out in relative mode (that is, observing the vector difference in coordinates between two simultaneously recording GNSS stations), a network of COGRs with precisely known coordinates is a very useful infrastructure. Precise positioning can then be carried out by one person with a single geodetic-quality GNSS receiver, using data downloaded from the COGRs.

All OS Net stations are coordinated in three dimensions by GNSS in the ETRS89 terrestrial reference system. Hence the user obtains ETRS89 coordinates for their unknown points, which are suitable for use with the Ordnance Survey transformations to the mapping coordinate systems OSGB36 and ODN (see section 6 below). ETRS89 coordinates can also very easily be transformed to the international ITRS datum (see section 6.5 below) – this is usually only required for international scientific applications.

Realising WGS84 with a TRF
From one coordinate system to another: geodetic transformations