LogoLogo
OS Docs HomeOS NGDOS APIsOS Download ProductsMore than MapsContact Us
  • More than Maps
  • Geographic Data Visualisation
    • Guide to cartography
      • Introduction to cartography
      • Types of maps
      • Symbology
      • Colour
      • Text on maps
      • Generalisation
      • Coordinate reference systems
      • Projections
      • Scale
      • Map legends
      • Map layout
      • Relief representation
      • North arrows
    • Guide to data visualisation
      • Introduction to data visualisation
      • GeoDataViz design principles
      • Types of visualisation
      • Thematic mapping techniques
      • Data visualisation critique
      • Accessible data visualisation
      • Ethical data visualisation
      • Software
      • Data
    • GeoDataViz assets
      • GeoDataViz basemaps
      • Stylesheets
      • GeoDataViz virtual gallery
      • Equal area cartograms
      • How did I make that?
        • Apollo 11 Landing
        • North York Moors National Park, 70 years
        • Snowdonia National Park, 70 years
        • Great Britain's National Parks
        • Great Britain's Islands
        • Great Britain's AONB's and National Scenic Areas
        • Famous shipwrecks of Pembrokeshire
        • Trig pillars today
        • Britain's most complex motorway junctions
      • #30DayMapChallenge
  • Data in Action
    • Examples
  • Demonstrators
    • 🆕Product Viewer
    • Addressing & location demonstrators
      • Address Portfolio overview
      • Which address product should you use?
      • AddressBase
      • AddressBase Core
      • AddressBase Plus
      • AddressBase Premium
      • Address Classifications
      • Addressing Lifecycle
      • OS Emergency Services Gazetteer
      • What are Vertical Streets?
      • Why are there differences in boundaries?
    • Contextual demonstrators
    • Customer best practice
      • Channel Shift
      • Data Management and OS Data Hub
      • End User Licence vs Contractor Licence
      • 🆕 IDs vs Spatial Relationships
      • Why we should capture good quality addresses at source
      • Why we Snap and Trace
    • Network Demonstrators
      • OS Detailed Path Network
      • OS Multi Modal Routing Network
        • OS Multi Modal Routing Network
      • Water Networks overview
      • OS MasterMap Highways Network and OS NGD Speeds
      • OS MasterMap® Highways Network and OS Open Roads™
    • OS MasterMap Generation APIs
      • Using the OS Features API
      • Using the OS Features API Archive
      • Using the OS Downloads API
      • Using OS APIs in ESRI Software
    • 🆕OS NGD (National Geographic Database)
      • OS NGD Address
      • OS NGD Boundaries
      • 🆕OS NGD Buildings
        • 🆕Building and Building Access Feature Types
        • Building Part and Building Line Feature Types
      • 🆕OS NGD Geographical Names
      • OS NGD Land
      • OS NGD Land Cover enhancements
      • 🆕OS NGD Land Use
      • OS NGD Land Use enhancements
      • 🆕OS NGD Structures
        • 🆕OS NGD Structures
        • Field Boundaries
      • 🆕OS NGD Transport Features
      • 🆕OS NGD Transport Network
      • OS NGD Transport RAMI
      • OS NGD Water Features
      • OS NGD Water Network
      • OS NGD API - Features
      • Ordering OS NGD data
      • Change only updates
      • OS NGD Versioning
      • Creating a topographic map from OS NGD Data
      • Analytical styling for OS NGD data
    • OS MasterMap® demonstrators
    • 🆕Product & API Comparisons
      • 🆕Comparison of Water Network Products
  • Tutorials
    • GeoDataViz
      • Thematic Mapping Techniques
      • Downloading and using data from the OS Data Hub
      • How to download and use OS stylesheets
      • How to use the OS Maps API
      • Creating a bespoke style in Maputnik
    • GIS
      • Analysing pavement widths
      • Basic routing with OS Open Data and QGIS
      • Walktime analysis using OS Multi-modal Routing Network and QGIS
      • Creating 3D Symbols for GIS Applications
      • Constructing a Single Line Address using a Geographic Address
      • Creating a Digital Terrain Model (DTM)
      • Visualising a road gradient using a Digital Terrain Model
      • Visualising a road gradient using OSMM Highways
    • 🆕APIs
      • 🆕Using OS APIs with EPC API
      • 🆕OS APIs and ArcGIS
  • Deep Dive
    • Introduction to address matching
    • Guide to routing for the Public Sector
      • Part 1: Guide to routing
      • Part 2: Routing software and data options
      • Part 3: Building a routable network
    • Unlocking the Power of Geospatial Data
    • Using Blender for Geospatial Projects
    • A Guide to Coordinate Systems in Great Britain
      • Myths about coordinate systems
      • The shape of the Earth
      • What is position?
        • Types of coordinates
        • We need a datum
        • Position summary
      • Modern GNSS coordinate systems
        • Realising WGS84 with a TRF
        • The WGS84 broadcast TRF
        • The International Terrestrial Reference Frame (ITRF)
        • The International GNSS Service (IGS)
        • European Terrestrial Reference System 1989 (ETRS89)
      • Ordnance Survey coordinate systems
        • ETRS89 realised through OS Net
        • National Grid and the OSGB36 TRF
        • Ordnance Datum Newlyn
        • The future of British mapping coordinate systems
        • The future of British mapping coordinate systems
      • From one coordinate system to another: geodetic transformations
        • What is a geodetic transformation?
        • Helmert datum transformations
        • National Grid Transformation OSTN15 (ETRS89–OSGB36)
        • National Geoid Model OSGM15 (ETRS89-Orthometric height)
        • ETRS89 to and from ITRS
        • Approximate WGS84 to OSGB36/ODN transformation
        • Transformation between OS Net v2001 and v2009 realisations
      • Transverse Mercator map projections
        • The National Grid reference convention
      • Datum, ellipsoid and projection information
      • Converting between 3D Cartesian and ellipsoidal latitude, longitude and height coordinates
      • Converting between grid eastings and northings and ellipsoidal latitude and longitude
      • Helmert transformation worked example
      • Further information
  • Code
    • Ordnance Survey APIs
    • Mapping
    • Routing with pgRouting
      • Getting started with OS MasterMap Highways and pgRouting
      • Getting started with OS MasterMap Highways Network - Paths and pgRouting
      • Getting started with OS NGD Transport Theme and pgRouting
      • Getting started with OS NGD Transport Path features and pgRouting
  • RESOURCES
    • 🆕Data Visualisation External Resources
Powered by GitBook

Website

  • Ordnance Survey

Data

  • OS Data Hub
On this page

Was this helpful?

  1. Deep Dive
  2. A Guide to Coordinate Systems in Great Britain
  3. Modern GNSS coordinate systems

European Terrestrial Reference System 1989 (ETRS89)

PreviousThe International GNSS Service (IGS)NextOrdnance Survey coordinate systems

Last updated 4 months ago

Was this helpful?

With each of the three GNSS TRFs we have encountered so far (US DoD tracking stations, broadcast GNSS orbits, and IERS/IGS TRF) a new version of the WGS84 datum has been introduced. Geodetic datums are like this – in theory the datum is exactly specified by the adopted conventions but in practice, each TRF intended to realise that specification actually implements a slightly different datum. Often, there are deliberate reasons for this, as in the case of the deliberate random element (Selective Availability) that was at one time introduced to the WGS84 datum in the broadcast satellite orbits.

Another type of deliberate variation to the WGS84 datum definition is found in realisations that are intended to serve a particular geographic region for mapping purposes. As we saw in listed above, the WGS84 position of any particular point on the Earth’s surface is changing continuously due to various effects, the most important of which is tectonic motion. So WGS84 itself is unsuitable for mapping – the ground keeps sliding across the surface of any WGS84 mapping grid!

However, it is still useful to have a mapping coordinate system that is compatible with GNSS. This is done by selecting a particular moment in time (in geodesy a moment in time is called an epoch, which is an unusual usage of that word), and stating the WGS84 coordinates of points in the region of interest at that epoch, regardless of the time of observation. Remember that the Cartesian axes and ellipsoid of WGS84 move steadily such that the motion is minimal with respect to the average of tectonic plate motions worldwide. Fixing the datum epoch has the effect of creating a new datum definition (that is, a new set of Cartesian axes and ellipsoid location and orientation) which initially coincides exactly with WGS84, but from then on remains stationary with respect to the particular piece of the Earth’s crust where the fixed points are, while moving steadily away from the WGS84 axes and ellipsoid.

This adoption of a particular WGS84 epoch to remove the effect of tectonic motion has been done in various places in the world – in fact, everywhere WGS84 has been adopted for mapping. Examples of WGS84-like datums which are gradually diverging from WGS84 are North American Datum 1983, New Zealand Geodetic Datum 2000, and the Geocentric Datum of Australia. There is also a European example, the European Terrestrial Reference System 1989 (ETRS89), which as the name suggests is a datum that coincided with WGS84 at the moment in time 1989.0, and has been slowly diverging ever since, moving with the Eurasian land mass. ETRS89 is ideal for a Europe-wide consistent mapping and data sets and it is mandatory for any data set complying with the EU INSPIRE directive.

For every realisation of ITRS (e.g. ITRF97, ITRF2000, ITRF2005,…) there is an equivalent TRF associated with ETRS89, called ETRFyyyy (or yy pre year 2000) where yyyy is the year of the “parent” ITRF (e.g. ETRF97, ETRF2000, ETRF2005 and so on). However, the epoch of all the ETRFs is 1989.0 so they are closely aligned with each other. What can be confusing is that often the ETRF will be quoted with an epoch relating to the parent ITRF from which it was derived. For example the current realisation of the OS Net coordinates (see ) are of course in ETRS89 (epoch 1989.0) but the “official” designation would be ETRF97 epoch 2009.756. That is - the parent ITRF is ITRF97 realised from observations centred on epoch 2009.756 (00:00:00, 04/10/2009). This information regarding the “parent” ITRF is useful if transforming between an ETRF and other ITRFs.

The reason for a new ETRF every time ITRF is updated is to take advantage of the improvements in the ITRF realisation and also to keep the ETRS89 realisation as close as possible to the current ITRS one, but still at epoch 1989.0.

Although not identical with WGS84, these locally-fixed GNSS datums are very easily and accurately related back to WGS84. This is because tectonic plate motion is very steady, predictable and precisely known. The ETRS89 coordinate of any point can easily be converted to a WGS84 coordinate via a simple transformation.

The importance of ETRS89 and ETRF to us in Britain is that this is the datum and TRF used for all OS GNSS positioning. It is a convenient system because we can forget about the tectonic effects apparent in WGS84 (which do not concern us in British mapping), while still being able easily to convert these coordinates to WGS84 when required. OS Net uses ETRS89 as its datum, and is a densification of the ETRF. More information on this topic is available in .

Ordnance Survey coordinate systems
Ordnance Survey coordinate systems