Helmert transformation worked example

All the transformation functions are coded into a spreadsheet available from the OS website.

Transform ETRS89/WGS84 coordinates to OSGB36.

XA = 3790644.900 m YA = -110149.210 m ZA = 5111482.970 m

tX(m)
tY(m)
tZ(m)
s (ppm)
rX(sec)
rY(sec)
rZ(sec)

- 446.448

+ 125.157

- 542.060

+ 20.4894

- 0.1502

- 0.2470

- 0.8421

Coordinate matrix for system “A” (ETRS89):

D1

[3790644.900110149.2105111482.970]\begin{bmatrix} 3790644.900 \\ -110149.210 \\ 5111482.970 \end{bmatrix}

Rotation & scale matrix. Diagonal scale elements = 1+(scale ppm * 0.000001); rotation elements are rotation parameters converted from seconds to radians:

D2

[1.00002048944.08261601×1061.19748979×1064.08261601×1061.00002048947.28190149×1071.19748979×1067.28190149×1071.0000204894]\begin{bmatrix} 1.0000204894 & 4.08261601 \times 10^{-6} & -1.19748979 \times 10^{-6} \\ -4.08261601 \times 10^{-6} & 1.0000204894 & 7.28190149 \times 10^{-7} \\ 1.19748979 \times 10^{-6} & -7.28190149 \times 10^{-7} & 1.0000204894 \end{bmatrix}

Coordinate translations matrix:

D3

[446.448125.157542.060]\begin{bmatrix} -446.448 \\ 125.157 \\ -542.060 \end{bmatrix}

(D2) * (D1):

[3790715.9974110163.22055111592.3207]\begin{bmatrix} 3790715.9974 & \\-110163.2205 & \\5111592.3207 \end{bmatrix}

(D3) + (D4):

[3790269.549110038.0645111050.261]\begin{bmatrix} 3790269.549 &\\ -110038.064 &\\ 5111050.261 \end{bmatrix}

So system “B” (OSGB36) coordinates are:

xB=3790269.549myB=110038.064mzB=5111050.261mxB = 3790269.549\\ m yB = -110038.064\\ m zB = 5111050.261 m

The above OSGB36 XYZ coordinates can be converted to latitude, longitude, height using the equations in Annex B.2. Remember that the height in this case approximates a height above ODN and not above the Airy 1830 ellipsoid. The latitude and longitude can also be projected to eastings and northings using the equations in Annex C.1.

53° 36’ 42.2972” N, 001° 39’ 46.5416” W, 249.950 m

422297.792 mE, 412878.741 mN

Last updated